
Journal of Computational Physics 202 (2005) 134–149

www.elsevier.com/locate/jcp
Sine-fit procedure for unevenly sampled, multiply
clocked signals

Edoardo Milotti *
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Abstract

When signals are unevenly sampled and homodyne or heterodyne setups are used that involve multiple clocks, it is

not possible to use the standard algorithms to produce accurate spectral density estimates. The PVLAS experiment is an

example of such an experimental scheme and here it is shown how to implement an algorithm which generalizes the

standard sine-fit and Lomb–Scargle procedures to obtain both amplitude and phase of important Fourier components

of the physical signal, with an application to PVLAS data.

� 2004 Elsevier Inc. All rights reserved.
1. Introduction

In today�s practice, signals are often sampled by analog-to-digital converters (ADC) driven by very pre-

cise clocks, and afterwards (or also concurrently if enough computing power is available) the samples are

analyzed by Fast Fourier Transform (FFT) or other similar standard techniques (for an overview, see [1]).
However, this is not always the case, and when signals are unevenly sampled and homodyne or heterodyne

setups are used that involve multiple clocks, it is not possible to use the standard algorithms to produce

accurate spectral density estimates. The PVLAS experiment, designed to perform a very delicate test of

quantum electrodynamics (QED) [2,3] and to search for light pseudoscalar particles [4], is an example of

a multiclock heterodyne scheme, and here it is shown how to implement an algorithm which generalizes

the standard sine-fit [5] and Lomb–Scargle [6] procedures to obtain both amplitude and phase of important

Fourier components of the physical signal, with an application to PVLAS data. The next section summa-

rizes a few important facts, Sections 3 and 4 outline the theory, Section 5 reports the results obtained with
test data, and Section 6 shows how the procedure has been implemented in the case of PVLAS.
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2. Spectral power density and phase estimates

It is easy to show [1] that the discrete Fourier transform of a set of N samples {sk} is equivalent to a least

square fit procedure to the data with the model function
smodel
k ¼ 1ffiffiffiffi

N
p

X
n

F n exp
2pkn
N

� �
; ð1Þ
i.e., with a set of fixed-frequency trigonometric functions, where {Fn} is a set of complex parameters. If all

the samples have the same statistical variance, one finds that the least square fit yields
F n ¼
1ffiffiffiffi
N

p
X
k

sk exp � 2pkn
N

� �
; ð2Þ
which is just the standard definition of the discrete Fourier transform.

This basic idea can and has been extended, e.g., in the Prony method one tries to fit a signal with a small

number of complex exponentials
smodelðtkÞ ¼
X
n

An expðixntk þ iunÞ expð�tk=snÞ; ð3Þ
where the amplitudes An, phases /n, frequencies xn, and decay times sn are taken as fit parameters; unfor-

tunately the Prony method requires a nonlinear fit procedure, and it is known to be computationally expen-

sive and very sensitive to background noise [7,8].

In general, fitting methods may be more computationally demanding than the standard FFT, but have

two important advantages, there is no constraint on the number of samples (the FFT requires the number
of samples to be a power of 2, otherwise one falls back on the computationally inefficient Discrete Fourier

Transform (DFT)) and they are not limited to evenly spaced samples. One such example is the method of

Lomb and Scargle (LS) [6] which has been developed in the first place to obtain spectral estimates in the

case of astronomical data: this method is equivalent to fitting a single sine to data while sweeping its fre-

quency over the range of interest. Since the LS sine has – at each step – a fixed frequency, the fit procedure

leads to simple linear equations that are easily solved. In addition, it is easy to estimate the variance of the

results [9], data may be unevenly spaced and in this case the spectral estimate acquires additional immunity

from aliasing effects [10]. Sine-fit methods are often used to measure the performance of ADC circuits, but
this is usually done with equally spaced samples and with nonlinear fitting algorithms to estimate frequency

as well as amplitude and phase [5].

In addition to the spectral density estimate, the data analysis of the PVLAS experiment must return the

phase of some selected spectral lines, and the FFT is not well suited for this purpose (see Appendix A),

while the sine-fit method returns the phase just as well as the amplitude.
3. Generalized sine-fit procedure

We consider the case in which a physical effect may be modulated by one or more clocks which run at a

variable rate, i.e., the phase function of each term is known up to an additive constant while the frequency

appears to change. We also assume damping to be negligible, so that the model signal (3) becomes
smodelðtkÞ ¼
X
n

An cos unðtkÞ þ u0;n

� �
¼
X
n

An cosunðtkÞ cosu0;n � An sinunðtkÞ sinu0;n

� �
¼
X
n

xn cosunðtkÞ þ yn sinunðtkÞ½ �; ð4Þ
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where the sample times tk may be unevenly spaced, the phase functions un(tk) are known, and xn =

Ancosu0, n, yn = �An sinu0, n. In order to find the parameters xn, yn, and then the amplitudes

An ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2n þ y2n

p
and phase constants u0 = �arctan(yn/xn), we minimize the v2 function
v2 ¼
X
n

sk � smodelðtkÞ½ �2

r2
n

ð5Þ
and obtain the equations
X
k

xk
X
n

cosulðtkÞ cosunðtkÞ þ yk
X
n

cosulðtkÞ sinunðtkÞ
" #

¼
X
k

sk cosulðtkÞ;

X
k

xk
X
n

sinulðtkÞ cosunðtkÞ þ yk
X
n

sinulðtkÞ sinunðtkÞ
" #

¼
X
k

sk sinulðtkÞ:
ð6Þ
If we define the matrix elements
SðcsÞ
l;n ¼

X
k

cosulðtkÞ sinunðtkÞ;

SðscÞ
l;n ¼

X
k

sinulðtkÞ cosunðtkÞ;

SðccÞ
l;n ¼

X
k

cosulðtkÞ cosunðtkÞ;

SðssÞ
l;n ¼

X
k

sinulðtkÞ sinunðtkÞ
and the vector elements bðcÞn ¼
P

nsk cosulðtkÞ, and bðsÞn ¼
P

nsk sinulðtkÞ then we can write the matrix
equation
SðccÞ SðcsÞ

SðscÞ SðssÞ

 !
x

y

� �
¼

bc

bs

� �
: ð7Þ
It is easy to see that the 2N · 2N matrix S is symmetric and moreover if T = S�1, then T is symmetric and

the solution of the linear system (7) is Tb. Thus the solution vector is a linear combination of the samples

{sk}, and if we assume that the sampling error is the same for all samples, and also that it has a Gaussian

distribution with variance r2 and is uncorrelated [11], then the solution vector has a Gaussian distribution

as well, and the variances and the covariances of the individual xns and yns are [12]:
varðxnÞ ¼ r2
X
k

oxn
osk

� �2

; ð8Þ

varðynÞ ¼ r2
X
k

oyn
osk

� �2

; ð9Þ

covðxn; ynÞ ¼ r2
X
k

oxn
osk

� �
oyn
osk

� �
: ð10Þ
The partial derivatives can be obtained directly from the solution of the linear system (6):
oxn
osk

¼
XN
l¼1

T n;l cosulðtkÞ þ T n;lþN sinulðtkÞ½ �; ð11Þ
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oxn
osk

¼
XN
l¼1

T nþN ;l cosulðtkÞ þ T nþN ;lþN sinulðtkÞ½ � ð12Þ
and finally, using the matrix identity ST = I, and after a few straightforward but lengthy passages, we find
the following formulas for the variance of each xn,yn:
r2
n;x ¼ varðxnÞ ¼ r2T n;n; ð13Þ

r2
n;y ¼ varðynÞ ¼ r2T nþN ;nþN ; ð14Þ

qnrn;xrn;y ¼ covðxn; ynÞ ¼ r2T nþN ;n: ð15Þ
4. Variance of estimated amplitude and phase

Using the variances in Eqs. (13)–(15), we can calculate the variances of the estimated amplitudes and

phases. When the ratios xn/rn,x and yn/rn, y are well above 1, we can assume that the amplitudes and phases

have a Gaussian distribution as well, and use the usual approximate formulas [12] to evaluate the variances;

then we find
varAn ¼ r2
n;x

x2n
A2
n

þ r2
n;y

y2n
A2
n

þ 2qnrn;xrn;y
xnyn
A2
n

; ð16Þ

varu0;n ¼ r2
n;x

x2n
A4
n

þ r2
n;y

y2n
A4
n

� 2qnrn;xrn;y
xnyn
A4
n

; ð17Þ

covðAn;u0;nÞ ¼ r2
n;x

xnyn
A3
n

� r2
n;y

xnyn
A3
n

þ qnrn;xrn;y � x2n
A3
n

þ y2n
A3
n

 !
ð18Þ
and we see that varu0;n � varAn=A
2
n, as expected on intuitive grounds.

However, when the ratios xn/rn,x and yn/rn,y are close to or smaller than 1, we can no longer use Eqs.

(16)–(18) to evaluate the variances, since the probability distribution of amplitudes and phases is no longer

Gaussian. The joint probability density function (PDF) of each pair of variates x,y, is the usual Gaussian

bivariate distribution
Gðx; y; x0; y0;rx; ryÞ ¼
1

2prxry

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� q2

p exp � ðx� x0Þ2

2ð1� q2Þr2
x

þ q
ðx� x0Þðy � y0Þ
ð1� q2Þrxry

� ðy � y0Þ
2

2ð1� q2Þr2
y

" #
; ð19Þ
where we have introduced the correlation coefficient q = cov(x,y)/rxry, and x0, y0 are the values obtained
from the fit. The joint amplitude-phase PDF is
P ðA;u0Þ ¼ AGðA cosu;A sinu; x0; y0; rx; ryÞ ð20Þ

and the marginal PDFs of amplitude and phase are
PAðAÞ ¼ A
Z 2p

0

GðA cosu;A sinu; x0; y0; rx; ryÞdu; ð21Þ

PuðuÞ ¼
Z 1

0

AGðA cosu;A sinu; x0; y0; rx; ryÞdA: ð22Þ
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Fig. 1. Plot of the average amplitude Aav vs. central amplitude Ac.
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When x0/rx, y0/ry are small, then the amplitude estimate A0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x20 þ y20

p
does not correspond to the most

probable value nor to the actual average of A: Fig. 1 is a plot of the average Aav ¼
R1
0

APAðAÞdA vs. the

central value Ac which corresponds to the centroid of the Gaussian distribution (and which would be

the ‘‘true’’ estimate), and it shows the deviation when the center of the PDF is close to the origin. The con-
clusion is that the amplitude-phase pair is not well-suited to small signal-to-noise ratios and in this case one

should rather rely on the x0s and y0s alone.

Before moving on to the numerical tests of the algorithm, it is important to remark that in the case of

equally spaced sampling times the matrix S is approximately diagonal (it becomes exactly diagonal when

the phase difference over the total acquisition time is an integer multiple of p), and that in this case the diag-

onal elements are of the order of N/2, while the off-diagonal elements are at most of the order of 1. This

means that also for samples that are approximately equally spaced the matrix S is approximately diagonal,

and that the matrix T is another almost diagonal matrix with diagonal elements of the order of 2/N and
with off-diagonal elements at most of the order of 1/N2; then the xs and ys are almost uncorrelated, and

their variance is nearly the same, so that the joint PDF has a nearly circular symmetry.
5. Numerical tests

The fit procedure has been implemented and has been tested on simulated model data: all tests have been

carried out with 220 = 1,048,576 samples, and the timescale has been set so that a frequency of 1 (in

AFU = arbitrary frequency units) corresponds to 32 samples/period (these values have been chosen so that

the sample size and the time unit are similar to those in PVLAS, see below); this means that in an ordinary

FFT analysis the one-sided spectral density estimate ranges from 0 to 16 AFU and that the frequency
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resolution is 1/215 � 3.05 · 10�5 AFU (this also means that any phase fluctuation smaller than �0.0055� is
completely contained in a single FFT bin). The simulated data include white noise with standard deviation

r: this is the standard deviation of the noise signal integrated over the useful frequency band, so that the

average mean squared fluctuation in each bin of the folded noise spectrum in an ordinary FFT analysis

is r2
FFT ¼ r2=219 � 1:91� 10�6r2.
Figs. 2 and 3 show the results for reconstructed phase and amplitude vs. input amplitude in the case of a

single fixed-frequency sine plus Gaussian white noise. The figures show that the fit procedure behaves quite

well, but it is natural to ask how does it compare to a standard DFT analysis. Obviously, in this case the

DFT would be nearly as good in pinpointing the amplitude, but unless the sine frequency corresponds ex-

actly to one of the DFT frequencies, the DFT is unable to determine the phase of the input sine (see Appen-

dix A). Moreover, the sine-fit procedure works also when the frequency is unstable (but the phase is known)

and with unequally spaced samples: the DFT cannot handle these cases. Finally, the sine-fit procedure

works with any number of samples, while one can achieve FFT acceleration only for sample sizes that
are powers of 2.

Several other tests have been carried out and one always finds that the algorithm performs just as well

with a single sine plus noise with the addition of a relevant phase jitter (the case with average sample sep-

aration 11�.25 and phase jitter ±5� as been tested without any appreciable degradation of the output

values).

Figs. 4 and 5 show the results of fitting a simple model with two sines; the sines have fixed frequency

in the model of Fig. 4, while the sines in the model of Fig. 5 have an additional, individual, phase jitter

that brings about a frequency jitter approximately 9 times as large as the frequency resolution, and this
produces a power leakage that cannot be reduced by windowing. As a result the weaker peak in the

spectrum of Fig. 4 all but disappears in Fig. 5, while the stronger peak shows a clear broadening. While

the FFT analysis cannot detect the weaker peak, the sine-fit procedure can, and the fit parameters of the
log10 (A/ σ)
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Fig. 2. The figure shows the result of fitting several sets of simulated data, each with 220 � 106 simulated samples; the model function is

a simple sine with variable amplitude A plus noise; the input phase angle is 45�. Here u is the phase angle obtained from the fit

procedure while A is the input sine amplitude, and r is the noise standard deviation; in this case the noise variance in a single FFT bin is

related to the noise standard deviation by the formula log10 rFFT � log10r �2.85, and we see that the phase estimate is good only as

long as A/rFFT J 1.
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Fig. 3. The figure shows the result of fitting 220 � 106 simulated samples as in Fig. 2; the model function is a simple sine plus noise as in

Fig. 2. Here A0 is the amplitude obtained from the fit procedure while A is the input sine amplitude, and r is the noise standard

deviation; just as in the previous figure we see that the amplitude estimate is good only as long as A/rFFT J 1.
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weaker sine do not seem to be affected by the nearby stronger peak. This parameter independence is

fairly well preserved even in the case of a fit which does not include the stronger sine: Fig. 6 shows that

when the fit model does not include a nearby peak the parameters of the fitted line are affected only

when the peaks are very close to each other. In particular, Figs. 6 and 7 show contamination in the case

of a unfitted sine with equal amplitude and 10-fold higher amplitude, respectively. Similarly, Fig. 8

shows the response to a wrong hypothesis (one sine in the wrong place). While the model sines in Figs.

6–8 have fixed frequency, Fig. 9 shows what happens when the frequency is not fixed but jitters (as de-

scribed in the caption of Fig. 5): contamination extends further, but is very much reduced with respect
to the fixed-frequency case. This is easy to understand: because of the leakage produced by the phase

and frequency jitter, a ‘‘wrong’’ frequency Fourier component is always present in the nearby bins,

but, at the same time, the nonlinear phase function sets narrow bounds on acceptable Fourier

components.

The lesson learned from these simulations is that one should try to fit the data including all prior infor-

mation on the spectral density, but if this is not possible the algorithm still returns reasonable results. How-

ever, if one neglects strong peaks close to fitted sines, then some contamination is unavoidable, and in the

worst case it may lead to false peaks. This contamination is much reduced when the spectral components
have different phase functions.
6. Analysis of PVLAS data

Here I sketch very briefly how the methods described above shall be used to analyze the signals re-

corded in the PVLAS experiment [3]; the actual physics results shall be described in forthcoming PVLAS

collaboration papers.
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Fig. 4. Fit of a simple model with two fixed-frequency sines (amplitudes 0.01r, 10r, frequencies 0.99, 1.01 AFU, phase constants 0�,
90�, respectively) plus Gaussian white noise with amplitude standard deviation r. In this case, both cosines have been fit, and the fitted

quantities are: amplitudes (0.0098 ± 0.0014)r, (10.0012 ± 0.0014)r, phases 2.35 ± 8.07�, 90.0156 ± 0.0079�. The figure shows: (a) fit

results (dots) superimposed on the unwindowed FFT estimate of the spectral density; (b) as the previous figure but with a Hamming

window. The fit results coincide with the FFT estimate in the unwindowed case (in the windowed case the FFT shows the usual

amplitude decrease).
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Fig. 5. Fit of a simple model with two sines plus Gaussian white noise with amplitude standard deviation r, as in Fig. 4, but with the

addition of a small phase jitter, 0.1� for both sines (phase does not increase linearly with time, but performs an additional random walk,

so that the actual phase change at each time step is Du = xDt + r Æ 0.1�, where r is a uniform pseudorandom number distributed

between �0.5 and 0.5). Just as in Fig. 4 both sines have been fit, and the fitted quantities are: amplitudes (0.0117 ± 0.0014)r,
(9.9991 ± 0.0014)r, phases �4.30 ± 6.76�, 89.9930 ± 0.0079�. The figure shows: (a) fit results (dots) superimposed on the unwindowed

FFT estimate of the spectral density and (b) as the previous figure but with a Hamming window. Now the FFT estimates are affected

by a systematic error due to power leakage to nearby bins, and this is a kind of power leakage that cannot be compensated by

windowing. Here the standard deviation of phase jitter is approximately 9 times as large as the frequency resolution, and as a result the

bigger peak is considerably wider in the FFT spectrum, while the smaller peak is completely wiped out. On the other hand the sine-fit is

still quite good, with a phase uncertainty which is dictated by the background noise only.
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Fig. 6. Test of contamination from a nearby unfitted peak: the input model has two sines (amplitudes 1 a.u., phase constants 0� and
90�, respectively) and no noise, while the fit model has just one sine; the lower lying peak (fitted) has fixed frequency 1 AFU, while the

higher frequency peak has variable frequency f AFU. (a) Plot of the reconstructed amplitude vs. the logarithm of the frequency

difference log(f � 1) and (b) plot of the reconstructed phase constant vs. the logarithm of the frequency difference log(f � 1). In this

case, the bin size of an ordinary FFT would be about 3 · 10�5 AFU, which corresponds to about �4.52 on the logarithmic scale: thus

we see that the single sine model shows no significant contamination as long as the unfitted sine is at least 10 FFT bins away from the

fitted sine.
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PVLAS has been designed to detect light-field scattering, a subtle QED effect predicted long ago by Euler

and Heisenberg, and Weisskopf [13]: it seeks to achieve this difficult goal by repeatedly bouncing a polar-
ized beam of light back and forth through a strong magnetic field, and measuring the ensuing polarization
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Fig. 7. Test of contamination from a nearby strong unfitted peak: the input model has two sines (amplitudes 0.1 and 1 a.u., phase

constants 0� and 90�, respectively) and no noise, while the fit model has just one sine; the weaker peak (fitted) has fixed frequency 1

AFU, while the stronger peak has variable frequency f AFU. (a) Plot of the reconstructed amplitude vs. the logarithm of the frequency

difference log(f � 1) and (b) plot of the reconstructed phase constant vs. the logarithm of the frequency difference log(f � 1). In this

case, contamination is larger and is felt as far as 20–30 FFT bins.
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change. The QED vacuum loaded by the magnetic field should act like a uniaxial birefringent medium. The

apparatus is schematically shown in Fig. 10: a stabilized laser emits a beam that is linearly polarized by

a polarizer, then it enters a Fabry–Perot cavity, and as it exits the cavity it goes through a polarization
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Fig. 8. Another test of contamination from a nearby unfitted peak: in this case the input model has just one sine (amplitude 1 a.u.,

phase constant 0�), while the fit model has one sine at the wrong frequency (fixed at 1 AFU). Here we see that the presence of the close

unfitted sine leads to a wrong algorithmic response just as in Figs. 6 and 7; however here contamination produces a response to a wrong

hypothesis, while in Figs. 6 and 7 it leads to wrong fit parameters.
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Fig. 9. Yet another test of contamination from a nearby unfitted peak as in Fig. 8: in this case the input model has just one sine

(amplitude 1 a.u., phase constant 0�), while the fit model has one sine at the wrong frequency (fixed at 1 AFU); in addition the fit

hypothesis includes a large phase jitter (±5�). Here the large phase fluctuation leads to a wider contamination window because phase

fluctuations increase leakage, however contamination is reduced overall because the disturbing sine has a different phase function that

can never quite adapt to the assumed phase function.
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Fig. 10. Simplified layout of the PVLAS ellipsometer setup (see main text for an explanation).
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modulator and finally through an analyzer: at the end the beam is detected by a low-noise photodiode. The

birefringence of vacuum induced by the field is modulated at low frequency by mechanically rotating the

large dipole magnet, and a higher frequency birefringence modulation is added by the polarization modu-
lator. The photodiode current is proportional to the light intensity [2,3]
IðtÞ � I0 r2
P þ WðtÞ þ gðtÞ þ CðtÞð Þ2

h i
; ð23Þ
where rP is the polarizer extinction,W(t) is the tiny ellipticity due to the QED effect, g(t) is the ellipticity due
to the modulator, and C(t) is the additional and slowly varying ellipticity introduced by the optical elements

in the beam path. If we represent modulation as follows:
WðtÞ ¼ W0 cos 2uLðtÞ þ 2uL;0

� �
;

gðtÞ ¼ g0 cos uH ðtÞ þ uH ;0

� �
;

where uL(t) + uL,0 is the phase angle of the rotating table that supports the dipole magnet, then, expanding

(23), one finds [2,3] that the photodiode current is
I
I0

¼ r2
P þ 1

2
W2

0 þ 1
2
g20 þ C2ðtÞ þ 2CðtÞW0 cos 2uLðtÞ þ 2uL;0

� �
þ 1

2
W2

0 cos 4uLðtÞ þ 4uL;0

� �
þ g0W0 cos uH ðtÞ þ 2uLðtÞ þ uH ;0 þ 2uL;0

� �
þ cos uH ðtÞ � 2uLðtÞ þ uH ;0 � 2uL;0

� �� �
þ 2g0CðtÞ cos uH ðtÞ þ uH ;0

� �
þ 1

2
g20 cos 2uHðtÞ þ 2uH ;0

� �
: ð24Þ
Eq. (24) is the physical model of the photodiode signal, and is of the form discussed in the previous sections:

in order to fit it we must know first the phase functions uL(t) and uH(t). The rotating table that supports the

magnet is driven by an oleodynamic drive and the mechanical rotation rate is fairly stable, and is charac-

terized by small but significant random irregularities that depend both on the previous rotation history and

on the environmental parameters: Fig. 11 shows a record of the rotation frequency in one data acquisition
run (run 503, with about 1,300,000 samples taken with an ADC clock frequency of 8200 Hz). The position

of the rotating table is monitored by means of a LED-photodiode pair that detects a series of 32 (almost)
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Fig. 11. Plot of the table rotation frequency during one short data acquisition run (run 503).
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Fig. 12. Detail of the spectral density of the photodiode signal in one run with gas (run 503 with N2 at low pressure); the central peak

corresponds to the 2g0C(t) cos(uH(t) + uH, 0) term in Eq. (24), while the sidebands correspond to cos(uH(t) ± 2uL(t) + uH,0 ± 2uL,0) (as

in Eq. (24)) and to cos(uH(t) ± uL(t) + uH,0 ± uL,0) (spurious signals). The dots mark the amplitude values found by the sine-fit

procedure: part of the increase with respect to the FFT peaks is attributable to windowing (a Hamming window was used with the

FFT), but not all of it, as it appears from the different gain obtained for the two pairs of sidebands.
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evenly spaced ticks on the table edge. The tick signal is used to reconstruct the table phase angle uL(t). The

polarization modulator is driven by a precise sine-wave generator (HP3325B): the signal is very clean and it

is fairly easy to precisely reconstruct the phase function uH(t). Fig. 12 shows both a detail of the FFT esti-

mate of the spectral density of the windowed signal, and the fit results. In this short run the table rotation

frequency is very stable and the peaks are very strong: here the physical effect is mimicked by the Cotton-

Mouton effect in nitrogen [14]. Both the physical peaks and the smaller peaks from spurious signals (due to

mechanical vibrations in the apparatus) have been fit, and in this case there is an excellent agreement be-
tween the FFT estimate and the sine-fit procedure (most of the FFT peak reduction is due to windowing).

This is not always the case, especially when the physical signal is very weak and when the table rotation

frequency is not as smooth as here.
7. Conclusions

The algorithm studied in this paper is a variant of the sine-fit method and it provides an excellent ampli-
tude and phase determination of selected spectral components. It has all the advantages of similar methods:

samples do not have to be evenly spaced, samples may be any number and not a power of 2, the method

provides an error estimate as well as an accurate determination of amplitude and phase. The numerical tests

show that the algorithm performs reasonably well even when the theoretical model is not well defined. All

the tests in the paper have been performed with (almost) evenly spaced points and have been compared

to the ordinary FFT because the FFT representation is so familiar, but it is clear that in extreme cases nei-

ther the FFT nor other methods that require evenly spaced samples, like AR models [1], may compete with

this sine-fit algorithm. The generalized sine-fit procedure successfully returns both amplitude and phase of
all the components present in the model when the time-dependent part of the phase functions is given. It is

at fault when the model does not include some component which is both strong and very close to the sines

included in the model. However, the greater the difference between the different phase functions, the better

becomes the rejection of unwanted components. As an alternative, one might try to use Bayesian methods

[15], but these would not bring any improvement: in fact the sine-fit procedure described here is a model

containing all of the available prior information and a Bayesian method could at best be equivalent to it.
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Appendix A. Phase determination with the FFT

Let
fk ¼ A0 cos x0tk þ u0ð Þ ðA:1Þ

be a fixed-frequency signal, and assume a sampling interval Dt, so that tk = kDt and the sampling frequency
is mS = 1/Dt. Then, if we take N evenly spaced samples, the frequency resolution of an FFT analysis is

Dm = mS/N, and using Dm as frequency unit we see that the angular frequency x0 corresponds to n0 = x0/

Dx = m0/Dnu = Nm0/mS. In general n0 is not an integer, and
fk ¼ A0 cos x0tk þ u0ð Þ ¼ A0 cos
x0

Dx
DxkDt þ u0

� 	
¼ A0 cos

2pkn0
N

þ u0

� �
: ðA:2Þ
The DFT of the signal (A.2) is easily shown to be
F n ¼
1ffiffiffiffi
N

p
X
k

A0 cos
2pkn0
N

þ u0

� �
exp � 2pkn

N

� �

¼ A

2
ffiffiffiffi
N

p ei u0þpðn�n0Þþpðn�n0Þ=N½ � sin pðn� n0Þð Þ
sinðpðn� n0Þ=NÞ



þ ei �u0�pðnþn0Þþpðnþn0Þ=N½ � sin pðnþ n0Þð Þ

sinðpðnþ n0Þ=NÞ

�
ðA:3Þ
so that the phase associated to each FFT bin in the proximity of the two peaks is a linear function:
uþðkÞ ¼ u0 þ pðn� n0Þ þ p
n� n0
N

; ðA:4Þ

u�ðkÞ ¼ �u0 � pðnþ n0Þ þ p
nþ n0
N

: ðA:5Þ
From Eqs. (A.4) and (A.5), it would seem possible to extract the phase information of signal (A.1), but in

actual practice this is quite difficult or nearly impossible because of the presence of many other peaks and

background noise, and because the actual determination of phase can only be made mod 2p. In fact the

determination of phase requires prior determination of the exact peak position n0, otherwise even a very

small error leads a very large phase error: for instance, in the case of the PVLAS data, n0 is of the order

of 106, thus, even a relative error of 2 · 10�6 causes a phase error of the order of 2p and total ignorance
about the actual (folded) phase u0. In practice, the background noise and the presence of other close peaks

makes this method unfeasible, and therefore the FFT is not capable of providing any useful phase infor-

mation in an experimental situation like that of PVLAS.
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